![]() 先の動作からの残留電圧を用いてその後の動作のバイアス電圧を確立するシステム及び方法
专利摘要:
低デューティサイクルのアプリケーションのための受信機の電力効率を向上するシステム及び方法。一側面では、受信機は、必要に応じて受信信号を増幅するように比較的速い方法でイネーブルとされ、そして低ノイズ増幅器(LNA)を低電力消費モードに設定するためにディセーブルとされることが可能なLNAを含む。より具体的には、LNAは、優遇型(complimentary)デバイスの対と、この優遇型デバイスに実質的に同じ電流を速やかに流させるように適合されたイネーブル回路とを含む。別の側面では、前の動作からの残留電圧を用いてLNAの現在のバイアス電圧を確立するバイアス電圧生成装置が与えられる。より具体的には、この装置は、可変キャパシタを、固定されたキャパシタに印加された残留電圧に基づく容量に調整し、そしてキャパシタを結合してバイアス電圧を確立するように適合されたコントローラを含む。 公开号:JP2011514119A 申请号:JP2010550658 申请日:2008-03-14 公开日:2011-04-28 发明作者:ファッグ、ラッセル・ジョン 申请人:クゥアルコム・インコーポレイテッドQualcomm Incorporated; IPC主号:H04B1-16
专利说明:
[0001] この開示は概して通信システムに関し、より具体的には、低デューティサイクルのアプリケーションにおける受信機の電力効率を向上させるシステム及び方法に関する。] 背景技術 [0002] バッテリのような限られた電源で動作する通信デバイスは一般的に、対象とする機能を提供しつつ、比較的低消費電力である技術を使用する。普及してきている一技術は、パルス変調技術を用いて信号を受信することに関する。この技術は一般に、低デューティサイクルのパルスを用いて情報を受信すること、及びこのパルスを受信しない期間は低電力モードで動作すること、を含む。よって、これらのデバイスでは通常、受信機を連続して動作させる通信デバイスより電力効率に優れている。] [0003] この種の受信技術を効果的なものとするように、受信機を形成するデバイスの1つまたはそれ以上は速やかにイネーブルとされ、そして受信した低デューティサイクルパルスを効果的に処理するように十分に動作状態とされなければならない。これにより受信機は、より長い期間、低電力消費モードに留まり、そして受信パルスを処理するのに必要な時間に高電力消費モードとなることが可能となるだろう。更に、1つまたはそれ以上の受信デバイスがパルスを処理した後に残る残留ポテンシャルエネルギー(residual potential energy)は、受信機の電力効率をより良く向上させるために使用されるべきである。] [0004] この開示の側面は、共通に結合された入力と、共通に結合された出力とを有する第1及び第2の優遇型(complimentary)デバイスを含む増幅器と、優遇型デバイスの入力と出力との間に設けられたイネーブル回路とを備え、増幅器がイネーブルとされている際に、イネーブル回路が、優遇型デバイスに対して実質的に同じ電流を流させるように適合されている装置に関する。別の側面では、増幅器がディセーブルとされている際に、優遇型デバイスの入力または出力に所定の電圧を確立するために、イネーブル回路が更に適合される。側面は、請求項の少なくとも一つの要素を備え得る。] [0005] 別の側面では、イネーブル回路は、増幅器をイネーブルにする及びディセーブルとする制御信号に応答するように適合される。イネーブル回路は更に、所定の一定時間内に増幅器をイネーブルとするように構成される。更にイネーブル回路は、優遇型デバイスに対して実質的に同じ電流を流させるため、優遇型デバイスの入力に電荷を加える、または優遇型デバイスの入力から電荷を除去するように適合され得る。優遇型デバイスは、pチャネル電界効果トランジスタ(FET)と、nチャネルFETとを備え得る。装置は、20%またはそれ以上のオーダーのフラクショナル・スペクトル(fractional spectrum)、500MHzまたはそれ以上のオーダーのスペクトル、または20%またはそれ以上のオーダーのフラクショナル・スペクトルと500MHzまたはそれ以上のオーダーのスペクトルとを有する入力信号を増幅するように適合された受信機の一部として使用され得る。] [0006] 更に別の側面では、本開示は、1つまたはそれ以上の要素のバイアス電圧を生成または設定する装置に関する。より具体的には、この装置は、第1及び第2の容量性素子並びにコントローラを備え、コントローラは、第2の容量性素子を、第1の容量性素子の両端の第1電圧に基づく容量に調整し、そして調整された第2の容量性素子を第1の容量性素子に結合して、第1の容量性素子の両端にバイアス電圧を確立するように適合されている。コントローラは更に、第1電圧の電圧源を第1の容量性素子に結合するように適合され得る。コントローラは更に、第1タイミング信号に応答して、第1電圧源を第1の容量性素子に結合するように適合され、そして第2タイミング信号に応答して、調整された第2の容量性素子を第1の容量性素子に結合するように適合され得る。] [0007] この開示のその他の側面、利点、及び新規な特徴は、添付図面と共に考慮される時に、この開示の以下の詳細な説明から明らかになるだろう。] 図面の簡単な説明 [0008] 図1は、本開示の側面に従った、低デューティサイクルのアプリケーションのための典型的な受信機のブロック図を例示する。 図2は、本開示の別の側面に従った典型的な受信機によって生成され、及び/または処理された典型的な信号のタイミング図を例示する。 図3は、本開示の別の側面に従った典型的なイネーブル回路を含む典型的な低ノイズ増幅器(LNA)の回路図を例示する。 図4は、本開示の別の側面に従った典型的なイネーブル回路を含む別の典型的な低ノイズ増幅器(LNA)の回路図を例示する。 図5は、本開示の別の側面に従った典型的なバイアス電圧設定回路の回路図を例示する。 図6は、本開示の別の側面に従った典型的なバイアス電圧設定回路によって生成され、及び/または処理された典型的な信号のタイミング図を例示する。 図7は、本開示の別の側面に従った典型的な通信デバイスのブロック図を例示する。 図8は、本発明の別の側面に従った別の典型的な通信デバイスのブロック図を例示する。 図9Aは、本開示の別の側面に従った種々のパルス変調技術のタイミング図を例示する。 図9Bは、本開示の別の側面に従った種々のパルス変調技術のタイミング図を例示する。 図9Cは、本開示の別の側面に従った種々のパルス変調技術のタイミング図を例示する。 図9Dは、本開示の別の側面に従った種々のパルス変調技術のタイミング図を例示する。 図10は、本開示の別の側面に従った、種々のチャネルを介して互いに通信する種々の通信デバイスのブロック図を例示する。 図11は、本開示の別の側面に従った典型的な装置のブロック図を例示する。] 図1 図10 図11 図2 図3 図4 図5 図6 図7 図8 実施例 [0009] 本開示の種々の側面が、以下で述べられる。本明細書の教示は種々の広い形態で実施されることが出来、そして本明細書で開示されるあらゆる具体的な構造、機能、またはその両方は単に例示的なものに過ぎないことは明白であるべきである。本明細書の教示に基づいて当業者は、本明細書に開示された側面が、あらゆるその他の側面とは無関係に実施されることが出来、そしてこれらの側面の2つまたはそれ以上が種々の方法で組み合わされ得ることを理解するべきである。例えば、本明細書で説明された多くの側面を用いて、装置は実装され、方法は実施され得る。更に、本明細書で説明された側面の1つまたはそれ以上に加えて、またはこれら以外のその他の構造、機能、または構造及び機能を用いて、そのような装置は実装され、またはそのような方法が実施され得る。 上記概念のいくつかの例として、いくつかの側面においてこの開示は、低デューティサイクルのアプリケーションのための受信機の電力効率を向上するシステム及び方法に関する。一側面では、受信機は、受信データパルスを増幅するように、比較的速い方法でイネーブルとされ、そして低ノイズ増幅器(LNA)を低電力消費モードに設定するためにディセーブルとされることが可能なLNAを含む。より具体的には、LNAは、優遇的(complimentary)なデバイスの対と、この優遇的なデバイスに対して速やかに、実質的に同じ電流を流させるように適合されたイネーブル回路とを含む。別の側面では、先行する動作からの残留電圧(residual voltage)を用いてLNAの現在のバイアス電圧を確立するバイアス電圧生成装置が与えられる。より具体的には、この装置は、可変キャパシタを、残留電圧に基づく容量に調整し、そしてこのキャパシタを共に結合してLNAのバイアス電圧を形成するように適合されたコントローラを含む。] [0010] 図1は、本開示の側面に従った、低デューティサイクルのアプリケーションについての典型的な受信機100のブロック図を例示する。要約すれば、この受信機100は、低ノイズ増幅器(LNA)が受信パルスを増幅可能なように、比較的速い方法でLNAをイネーブルとし、そしてLNAが再度、低電力消費モードとされ得るように、比較的速い方法でLNAをディセーブルとするように構成されたLNAのイネーブル回路を含む。更に、受信機100は、LNAの前の動作(previous operation)から残された残留電荷または電圧を用いて、LNAの引き続く動作のためのバイアス電圧を確立するバイアス電圧設定回路を含む。これらの特徴は、受信機100の電力効率の向上に役立つ。] 図1 [0011] より具体的には、受信機100は、タイミング生成器102、バイアス電圧設定回路104、及びLNAのイネーブル回路を含むLNA106を備える。LNA106は、入力信号を受信し増幅して、出力信号を生成する。この入力信号は、1つまたはそれ以上の低デューティサイクルのパルスとして構成され得る。LNA106は、LNAが入力信号パルスを増幅可能なように、比較的速い方法でLNAをイネーブルとし、そしてLNAが低電力消費モードとされ得るように、比較的速い方法でLNAをディセーブルとするように構成されたイネーブル回路を、内部に含む。概してイネーブル回路は、LNAのようなデバイスを活性化するあらゆる回路であって良く、このデバイスにつき入力信号の処理を可能とさせるための回路であり得る。] [0012] バイアス電圧設定回路104は、外部キャパシタCに保持された、LNA106の前の動作から使い残された残留電圧または電荷を用いて、LNA106についてのバイアス電圧Vdd_Lnaを設定するように構成される。タイミング生成器102は、以下でより詳細に議論されるように、バイアス電圧Vdd_Lnaの設定と、LNA106をイネーブル及びディセーブルとすることを、それぞれBIAS VOLTAGE ENABLE 及びLNA ENABLE信号を用いることによって、調整する。] [0013] 図2は、本開示の別の側面に従った典型的な受信機100によって生成及び/または処理される典型的な信号のタイミング図を例示する。このタイミング図に従って、タイミング生成器102はまず、BIAS VOLTAGE ENABLE信号をアサートして、バイアス電圧設定回路104に対して、LNA106のバイアス電圧Vdd_Lnaを設定させる。もし、LNA106が前に(previously)動作していなければ、外部キャパシタCの両端には、残留電圧は無いだろう。従って、バイアス電圧設定回路104は、ゼロ(0)ボルトから、LNAバイアス電圧Vdd_Lnaを設定する。バイアス電圧Vdd_Lnaが確立された後、LNA ENABLE信号がアサートされる前に、BIAS VOLTAGE ENABLE信号はデアサート(de-assert)され得る。しかしながら、後により詳細に議論されるようにBIAS VOLTAGE ENABLE信号は、LNA106の受信ウィンドウの間中、アサートされ続けても良い。] 図2 [0014] LNAのバイアス電圧Vdd_Lnaが設定された後、タイミング生成器102はLNA ENABLE信号をアサートして、受信信号パルスを適切に増幅するように、比較的速い方法でLNA106をイネーブルにする。タイミング生成器102は、受信ウィンドウを形成するための十分な時間、すなわち、入力信号パルスが受信される時間間隔の間、LNA ENABLE信号をアサートし続ける。本例に示すように、入力信号パルスは、最初の受信ウィンドウ内で比較的早く受信され、これは論理highのような特定の方法で解釈され得る。受信ウィンドウの後、タイミング生成器102は、BIAS VOLTAGE ENABLE及びLNA ENABLE信号をアサートすることを停止して、LNA106をディセーブルとし、そしてそれを低電力消費モードとする。このように、入力信号が期待されない際にはLNA106を相対的に低電力モードで動作させ、入力信号が期待される際にはLNAを相対的に高電力モードで動作させることにより、電力的に効率的に動作される。] [0015] 次の受信サイクル時には、タイミング生成器102は再度、BIAS VOLTAGE ENABLE信号をアサートして、バイアス電圧設定回路102に対してLNAバイアス電圧Vdd_Lnaを設定させる。本例では、LNA106は既に動作しているから、外部キャパシタCの両端にはいくらかの残留電圧があるかもしれず、電圧設定回路104はこれを用いて、LNA106の引き続く動作のためのLNAバイアス電圧Vdd_Lnaを設定する。再度、本方法で、受信機100は、前の動作から残り得る残留ポテンシャルエネルギーを用いてLNA106に電力を供給することにより、電力的に効率的に動作される。先の受信サイクルにより、タイミング生成器102は次にLNA ENABLE信号をアサートして、受信信号パルスを適切に増幅するように、比較的速い方法で、LNA106をイネーブルとする。本例では、入力信号パルスは、2番目の受信ウィンドウ内で比較的遅く受信され、これは論理lowのような別の特定の方法で解釈され得る。] [0016] 図3は、本発明の別の側面に従った典型的なイネーブル回路を含む典型的な低ノイズ増幅器(LNA)300の回路図を例示する。LNA300は、先に議論したLNA106の一例であり得る。より具体的には、LNA300は、pチャネル電界効果トランジスタ(FET)M1及びM2の対、nチャネルFET M3及びM4の対、並びに抵抗R1及びR2の対を備える。pチャネルFET M1及びM2のソースは、バイアス電圧Vdd_Lnaを受信するように適合される。FET M1及びM4のゲートは、先に議論されたLNA ENABLE信号を受信するように適合される。] 図3 [0017] FETM2及びM3のゲートは、入力信号を受信するように適合される。出力信号は、FET M3及びM2のドレインで生成される。FET M1のドレインは、入力信号端子(及びFET M2及びM3のゲート)に電気的に結合される。抵抗R1は、FET M4のソースと入力信号端子(FET M2及びM3のゲート)との間に電気的に結合される。抵抗R2は、FET M4のドレインと出力信号端子(FET M2及びM3のドレイン)との間に電気的に結合される。FET M3のソースはVss電位に電気的に結合され、これは接地電位、またはVdd_Lnaよりも負の電位であり得る。] [0018] 動作時において、LNA300は、LNA ENABLE信号がlow論理レベルである際には低電力消費モードとなる。FETM1のゲート上のlow論理レベルにより、FET M1はオンされる。これにより、電圧Vdd_LnaがFET M2及びM3のゲートに印加される。これにより、FET M2はオフされ、FET M3はオンされる。更に、FET M4のゲートに印加されたlow論理レベルのLNA ENABLE信号により、FET M4はオフされる。よって、低電力消費モードでは、LNA300の出力信号端子は、FET M3がオンすること及びFET M2がオフすることにより、ほぼVss電位となる。入力信号端子は、FET M1がオンすることにより実質的にVdd_Lna電位となり、FET M4がオフすることにより、出力信号端子から実質的に分離される。] [0019] LNA ENABLE信号がlow論理レベルからhigh論理レベルに遷移すると、FETM1はオフし、FET M4はオンする。LNA ENABLE信号がhigh論理レベルに遷移する前は、入力信号端子の電圧は実質的にVdd_Lna電位であり、FET M3はオンしていたので、FET M4がオンすることにより、電荷が入力信号端子から、抵抗R1、FET M4のソース及びドレイン、抵抗R2、並びにFET M3のソース及びドレインを介して、Vssに流れる。これにより、入力信号端子の電圧が降下し、よってFET M2をより電流が流れるようにし、FET M3をより電流が流れないようにする。] [0020] 入力信号端子の電圧は、FETM2及びM3によって流れる電流の実質的な均衡に至るまで、降下する。均衡状態では、入力信号端子(例えばFET M2及びM3のゲート)の電圧は、ほぼVdd_Lna/2となる。この状態が生じると、FET M2及びM3の両方は、実質的に同じ線形領域にバイアスされ、FET M2及びM3は優遇的(complimentary)なプッシュプルデバイス(complimentary push-pull devices)として動作し、出力信号を生成するように入力信号を増幅する。LNA ENABLE信号がhigh論理レベルに遷移する際のFET M2及びM3のセルフバイアスは、比較的短い規定された時間間隔で生じるため、これによりLNA300は、必要に応じて入力信号を増幅するように、速やかに設定されることができる。入力信号が処理されると、LNA ENABLE信号はlow論理レベルに設定されて、上記議論したようにLNA300は再度、低電力消費モードとされる。] [0021] 図4は、この発明の別の側面に従った典型的なイネーブル回路を含む別の典型的な低ノイズ増幅器(LNA)400の回路図を例示する。LNA400は、前に議論されたLNA106の別の例であり得る。より具体的には、LNA400は、pチャネルFETM2、3つのnチャネルFET M1、M3、及びM4、抵抗R1及びR2の対、並びにインバータI1及びI2の対を備える。pチャネルFET M2のソースは、バイアス電圧Vdd_Lnaを受信するように適合されている。インバータI1の入力は、前に議論されたLNA ENABLE信号を受信するように適合されている。] 図4 [0022] FETM2及びM3のゲートは、入力信号を受信するように適合される。出力信号は、FET M2及びM3のドレインに生成される。FET M1のドレインは、入力信号端子(FET M2及びM3のゲート)に電気的に結合される。抵抗R1は、FET M4のソースと入力信号端子(FET M2及びM3のゲート)との間に電気的に結合される。抵抗R2は、FET M4のドレインと出力信号端子(FET M2及びM3のドレイン)との間に電気的に結合される。FET M1及びM3のソースはVssに電気的に結合され、Vssは接地電位またはVdd_Lnaよりもより負の電位であり得る。インバータI1の出力は、FET M1のゲート及びインバータI2の入力に電気的に結合される。インバータI2の出力は、FET M4のゲートに電気的に結合される。] [0023] 動作時においてLNA400は、LNA ENABLE信号がlow論理レベルにある際には低電力消費モードにある。インバータI1は、low論理レベルを反転してhigh論理レベルを生成する。このhigh論理レベルによりFETM3はオンし、これにより入力信号端子(FET M2及びM3のゲート)は、接地されまたはVss電位を印加される。FET M2及びM3のゲートにおける接地またはVss電位により、FET M2はオンされ、FET M3はオフされる。インバータI2は、インバータI1の出力におけるhigh論理レベルを反転して、FET M4のゲートにlow論理レベルを生成する。これによりFET M4はオフし、これにより出力信号端子を入力信号端子から分離する。低電力モードでは、出力信号端子の電圧はほぼVdd_Lnaであり、LNA300は、FET M1及びM3がオフしているために、わずかな電流を流すのみである。] [0024] LNA ENABLEがlow論理レベルからhigh論理レベルに遷移すると、インバータI1はlow論理レベルを生成し、これによりFETM1がオフする。インバータI2は、インバータI1の出力のlow論理レベルを反転してhigh論理レベルを生成し、これによりFET M4をオンする。LNA ENABLE信号がhigh論理レベルに遷移する前は、出力信号端子の電圧はほぼVdd_Lna電位であったから、FET M4がオンすることにより、電荷が出力信号端子から入力信号端子に流れ、これにより入力信号端子の電圧が上昇する。] [0025] 入力信号端子の電圧は、FETM2及びM3によって流れる電流の実質的な均衡が生じるまで、上昇する。均衡状態では、入力信号端子(FET M2及びM3のゲート)の電圧は、ほぼVdd_Lna/2となる。この状態が生じると、FET M2及びM3の両方は、実質的に同じ線形領域にバイアスされ、FET M2及びM3は優遇的(complimentary)なプッシュプルデバイスとして動作し、出力信号を生成するように入力信号を増幅する。LNA ENABLE信号がhigh論理レベルに遷移する際のFET M2及びM3のセルフバイアスは、比較的短い規定された時間間隔で生じるため、これによりLNA400は、必要に応じて入力信号を増幅するように、速やかに設定されることができる。入力信号が処理されると、LNA ENABLE信号はlow論理レベルに設定されて、上記議論したようにLNA400は再度、低電力消費モードとされる。] [0026] 図5は、本開示の別の側面に従った典型的なバイアス設定回路500の回路図を例示する。バイアス電圧設定回路500は、先に議論したバイアス電圧設定回路104の一例であり得る。バイアス電圧設定回路500は、LNAのバイアス電圧Vdd_Lnaを設定する。先に議論したように、LNAの動作の後に外部キャパシタの両端にいくらかの残留電圧があれば、バイアス電圧設定回路500はこの残留電圧を用いて、LNAの次の動作サイクルのためのVdd_Lnaを確立する。このようにして、バイアス電圧設定回路500は、LNAまたはLNAを組み込む受信機の電力効率を向上する。] 図5 [0027] より具体的には、バイアス電圧設定回路500は、コントローラ502、可変キャパシタ506、チップ外部のキャパシタ(off-chip capacitor)C、並びにFETT1及びT2の対を備える。コントローラ502は、タイミング生成器102からBIAS VOLTAGE ENABLE信号を受信する入力を含む。コントローラ502は更に、電圧Vdd_Chip、Vdd_Lna、及びVssを受信する入力を含み、Vssは接地電位であり得る。コントローラ502は更に、可変キャパシタ506の両端に電圧Vdd_Boostを生成し、FET T1及びT2のゲートにそれぞれ制御信号を生成する出力を含む。電圧Vdd_Boostは、Vdd_Chipよりも高くても良いし低くても良い。コントローラ502はまた、可変キャパシタ506の調整ワード(Tuning Word)を生成する出力を含む。] [0028] FETT1のソースは、電圧Vdd_Chipを受信するように適合される。FET T1のドレインは、外部キャパシタCの一端と、FET T2のドレインとに電気的に結合される。LNAのバイアス電圧Vdd_Lnaは、FET T1のドレインに生成される。キャパシタCの他端はVss電位に電気的に結合され、先に議論したようにこれは接地電位であり得る。FET T2のソースは、Vdd_Boostレール(rail)と、可変キャパシタ506の一端とに電気的に結合される。可変キャパシタ506の他端は、Vssに電気的に結合される。バイアス電圧設定回路500の動作は以下に説明される。] [0029] 図6は、本開示の別の側面に従った典型的なバイアス電圧設定回路500によって生成及び/または処理される典型的な信号のタイミング図を例示する。LNAの最初の動作の前に、Vdd_Lnaの電圧はV0として表され、これはゼロ(0)ボルトであり得る。コントローラ502は、現在の電圧Vdd_Lna(この例ではV0)に基づいて、可変キャパシタ506に電圧Vdd_Boost及び調整ワードを生成する。本質的には、コントローラ502は電圧V0を参照電圧と比較して、可変キャパシタ506についての適切な容量及び電圧Vdd_Boostを選択する。本例では、電圧V0は比較的小さいので(例えば、〜0V)、コントローラ502は、指定されたVdd_Lna電圧が確立されるように外部キャパシタCに必要な電荷を転送可能なように、比較的高い電圧Vdd_Boostを生成し、可変キャパシタ506を比較的高い容量に調整する。] 図6 [0030] タイミング生成器102から受信したBIAS VOLTAGE ENABLE信号に応答して、コントローラ502は、FETT1のゲートにパルスを送る。これによりFET T1は一時的にオンし、Vdd_ChipをキャパシタCに印加する。これに応答して、電圧Vdd_LnaはV0からV11に上昇する。その後、コントローラ502はFET T2のゲートにパルスを送信する。これによりFET T2は一時的にオンし、可変キャパシタ506から外部キャパシタCに電荷が転送される。これに応答して、電圧Vdd_LnaはV11からV12(LNAにつき指定されたバイアス電圧)に上昇する。そしてLNA ENABLE信号がアサートされて、入力信号パルスについての受信ウィンドウを形成する時間間隔の間、LNAがイネーブルとされる。本例においてFET T2は、可変キャパシタ506から外部キャパシタCに必要な電荷を転送するに足りる時間の間のみオンされるが、FET T2が、LNAがイネーブルとされている間オンされてもよいことが理解されるべきである。タイミング図に示すように、LNAの動作の間、電圧Vdd_LnaはV12からV13に降下する。] [0031] 2番目の動作サイクルにおいて、コントローラ502は、現在の電圧Vdd_Lna(本例では、今はV13)に基づいて、可変キャパシタ506の別の調整ワードを生成する。上で議論したように、コントローラ502は電圧V13を参照電圧と比較して、可変キャパシタ506の適切な容量を選択する。本例では、LNAの前の動作から使い残した、外部キャパシタCの両端に残された残留電圧により、電圧V13はV0よりも高いかもしれないため、コントローラ502は、可変キャパシタ506を比較的低い容量に調整し、比較的低い電圧Vdd_Boostを生成する。なぜなら、LNAの指定されたVdd_Lna電圧を得るために、同じ量の電荷を外部キャパシタCに転送する必要がないからである。このようにして、バイアス電圧設定回路500は、LNAの前の動作からの残留電圧を用いて、現在のバイアス電圧Vdd_Lnaを確立する。これにより受信機の電力効率が向上される。なぜなら、Cの残留電荷が、ある受信期間から次の受信期間に保持されるからである。] [0032] 2番目のサイクルの動作は、最初のサイクルの動作と同様である。より具体的には、タイミング生成器102から受信したタイミング信号に応答して、コントローラ502はFETT1のゲートにパルスを送信する。これによりFET T1は一時的にオンし、Vdd_ChipをキャパシタCに印加する。これに応答して、電圧Vdd_LnaはV13からV21に上昇する。再度、タイミング生成器102から受信した別のタイミング信号に応答して、コントローラ502はFET T2のゲートにパルスを送信する。これによりFET T2は一時的にオンし、可変キャパシタ506から外部キャパシタCに電荷が転送される。これに応答して、電圧Vdd_LnaはV21からV22(LNAにつき指定されたバイアス電圧)に上昇する。そしてLNA ENABLE信号がアサートされて、入力信号パルスについての受信ウィンドウを形成する時間間隔の間、LNAがイネーブルとされる。タイミング図に示すように、LNAの動作の間、電圧Vdd_LnaはV22からV23に降下する。このプロセスは、タイミング図に示すように、LNAのN番目の動作サイクルまで繰り返される。] [0033] 与えられた例では、バイアス電圧設定回路500はLNAのバイアス電圧の設定に関連して説明されてきたが、この回路は他のデバイスのバイアス電圧を設定するために用いられても良いことが理解されるだろう。この場合もやはり、バイアス電圧設定回路は、デバイスの先の動作からの残留電圧を有効に利用することで、本デバイスの新たなバイアス電圧を確立する。これは、上で議論されたようなLNAのみならず、あらゆるデバイスのバイアス電圧を設定する電力効率の高い方法である。なぜなら、Cの残留電荷が、ある受信期間から次の受信期間に保持されるからである。] [0034] 図7は、本開示の別の側面に従った典型的な受信機を含む典型的な通信デバイス700のブロック図を例示する。通信デバイス700は、他の通信デバイスにデータを送信し、他の通信デバイスからデータを受信するのに特に適し得る。通信デバイス700は、アンテナ702、Tx/Rx分離デバイス704、フロントエンド受信部706、RF-to-ベースバンド受信部708、ベースバンドユニット710、ベースバンド-to-RF送信部712、送信機714、データ受信機716、及びデータ生成器718を備える。受信機706は、LNA300及び400の1つまたはそれ以上並びにバイアス電圧設定回路500を含む、前に議論された受信機100の構成要素の少なくとも幾つかとして構成され、またはそれを含み得る。] 図7 [0035] 動作時においてデータプロセッサ716は、リモートの通信デバイスからRF信号を受け取るアンテナ702、この信号をフロントエンド受信部706に送るTx/Rx分離デバイス704、この受信した信号を増幅する受信機フロントエンド706、RF信号をベースバンド信号に変換するRF-to-ベースバンド受信部708、及びベースバンド信号を処理して受信データを判断するベースバンドユニット710を介して、リモートの通信デバイスからデータを受信し得る。そしてデータ受信機716は、受信データに基づいて、1つまたはそれ以上の決められた動作を実行し得る。例えばデータプロセッサ716は、マイクロプロセッサ、マイクロコントローラ、縮小命令セットコンピュータ(RISC)プロセッサ、ディスプレイ、スピーカのようなトランスデューサを含むヘッドセットのようなオーディオデバイス、医療機器、靴(shoe)、腕時計、データに応答するロボットのようなまたは機械的なデバイス、ディスプレイ、1つまたはそれ以上の発光ダイオード(LED)のようなユーザインターフェースなどを含み得る。] [0036] 更に、動作時においてデータ生成器718は、送信データを送信のためのベースバンド信号に処理するベースバンドユニット710、このベースバンド信号をRF信号に変換するベースバンド-to-RF送信部712、無線媒体を介した送信に適切なようにこのRF信号を調整する送信機714、RF信号をアンテナ702に送りつつ受信機フロントエンド706への入力を分離するTx/Rx分離デバイス704、及びRF信号を無線媒体に放射するアンテナ702を介して、別の通信デバイスへの送信のための送信データを生成し得る。データ生成器718は、センサまたはその他のタイプのデータ生成器であり得る。例えばデータ生成器718は、マイクロプロセッサ、マイクロコントローラ、RISCプロセッサ、キーボード、マウスまたはトラックボールのようなポインティングデバイス、マイクのようなトランスデューサを含むハンドセットのようなオーディオデバイス、医療機器、靴(shoe)、データを生成するロボットのようなまたは機械的なデバイス、ディスプレイ、1つまたはそれ以上の発光ダイオード(LED)のようなユーザインターフェースなどを含み得る。] [0037] 図8は、本開示の別の側面に従った典型的な受信機を含む典型的な通信デバイス800のブロック図を例示する。通信デバイス800は、他の通信デバイスからデータを受信するのに特に適し得る。通信デバイス800は、アンテナ802、フロントエンド受信機804、RF-to-ベースバンド送信部806、ベースバンドユニット808、及びデータ受信機810を備える。受信機804は、LNA300及び400の1つまたはそれ以上並びにバイアス電圧設定回路500を含む、前に議論された受信機100の構成要素の少なくとも幾つかとして構成され、またはそれを含み得る。] 図8 [0038] 動作時においてデータプロセッサ810は、リモートの通信デバイスからRF信号を受け取るアンテナ802、この受信した信号を増幅する受信機フロントエンド804、RF信号をベースバンド信号に変換するRF-to-ベースバンド受信部806、及びベースバンド信号を処理して受信データを判断するベースバンドユニット808を介して、リモートの通信デバイスからデータを受信し得る。そしてデータ受信機810は、受信データに基づいて、1つまたはそれ以上の決められた動作を実行し得る。例えばデータプロセッサ810は、マイクロプロセッサ、マイクロコントローラ、縮小命令セットコンピュータ(RISC)プロセッサ、ディスプレイ、スピーカのようなトランスデューサを含むヘッドセットのようなオーディオデバイス、医療機器、靴(shoe)、腕時計、データに応答するロボットのようなまたは機械的なデバイス、ディスプレイ、1つまたはそれ以上の発光ダイオード(LED)のようなユーザインターフェースなどを含み得る。] [0039] 図9Aは、本明細書で述べられたあらゆる通信システムで使用され得るパルス変調の例として、異なるパルス繰り返し周波数(PRF:pulse repetition frequencies)で規定された種々のチャネル(チャネル1及び2)を例示する。より具体的には、チャネル1のパルスは、パルス間の遅延期間(pulse-to-pulse delay period)902に対応するパルス繰り返し周波数(PRF)を有する。これに対してチャネル2のパルスは、パルス間遅延期間904に対応するパルス繰り返し周波数(PRF)を有する。よってこの方法は、2つのチャネル間でのパルス衝突の可能性の比較的低い疑似直交チャネル(pseudo-orthogonal channel)を規定するために使用され得る。より具体的には、パルスにつき低いデューティサイクルの使用により、パルス衝突の可能性を低くし得る。例えば、パルス繰り返し周波数(PRF)の適切な選択により、所定のチャネルについての実質的に全てのパルスが、他のチャネルについてのパルスと異なる時間に送信され得る。] 図9A [0040] 所定のチャネルにつき規定されたパルス繰り返し周波数(PRF)は、データレート、またはそのチャネルにサポートされたレートに依存し得る。例えば、非常に低いデータレート(例えば、数キロビット/秒、すなわちKbpsのオーダー)をサポートするチャネルは、対応する低いパルス繰り返し周波数(PRF)を使用し得る。これに対して、比較的高いデータレート(例えば、数メガビット/秒、すなわちMbpsのオーダー)をサポートするチャネルは、対応してより高いパルス繰り返し周波数(PRF)を使用し得る。] [0041] 図9Bは、本明細書で述べられたあらゆる通信システムで使用され得る変調の例として、異なるパルス位置またはオフセット(pulse positions or offset)で規定された種々のチャネル(チャネル1及び2)を例示する。チャネル1のパルスは、第1のパルスオフセット(所定の時刻に対して(図示せず))に従って、線906で表される時刻に生成される。これに対してチャネル2のパルスは、第2のパルスオフセットに従って、線908で表される時刻に生成される。パルスオフセット差(矢印910で表される)をパルス間に与えることにより、本方法は、2つのチャネル間でのパルス衝突の可能性を低減するために使用され得る。(例えば本明細書で議論されたように)チャネルにつき規定されるその他のシグナリング・パラメータ(signaling parameter)、及びデバイス間のタイミングの精度(例えば相対的なクロックドリフト)に依存して、種々の異なるパルスオフセットが、直交または疑似直交チャネルをもたらすために使用され得る。] 図9B [0042] 図9Cは、本明細書で述べられたあらゆる通信システムで使用され得る、種々の時間ホッピング・シーケンス変調(timing hoppingsequence modulation)で規定された種々のチャネル(チャネル1及び2)を例示する。例えば、チャネル1のパルス912は、ある時間ホッピング・シーケンスに従って生成され、チャネル2のパルス914は、別の時間ホッピング・シーケンスに従って生成され得る。使用される特定のシーケンス及びデバイス間のタイミング精度に依存して、本方法は、直交または疑似直交チャネルをもたらすために使用され得る。例えば、時間ホッピングされたパルス位置は周期的では無く、これにより隣接チャネルから、繰り返されるパルスの衝突の可能性を低減する。] 図9C [0043] 図9Dは、本明細書で述べられたあらゆる通信システムで使用され得るパルス変調の例として、種々のタイム・スロット(time slot)で規定された種々のチャネル(チャネル1及び2)を例示する。チャネルL1のパルスはある時刻で生成される。同様に、チャネルL2のパルスは別の時刻で生成される。同様にして、チャネルL3のパルスは更に別の時刻で生成される。一般的に、異なるチャネルに関連する時刻は同時に発生せず、または直交し、これにより、種々のチャネル間の干渉を低減しまたは撲滅する。] 図9D [0044] パルス変調スキームに従ってチャネルを定義するために、その他の方法が使用されても良いことが理解されるべきである。例えばチャネルは、種々の拡張疑似乱数(spreading pseudo-random number)シーケンス、またはその他の適切なパラメータまたは複数のパラメータに基づいて規定されても良い。更にチャネルは、2つまたはそれ以上のパラメータの組み合わせに基づいて規定されても良い。] [0045] 図10は、本開示の別の側面に従った、種々のチャネルを介して互いに通信する様々なウルトラ・ワイドバンド(UWB:ultra-wide band)通信デバイスのブロック図を例示する。例えば、UWBデバイス1 1002は、2つの並列(concurrent)するUWBチャネル1及び2を介してUWBデバイス2 1004と通信する。UWBデバイス1002は、単一のチャネル3を介してUWBデバイス3 1006と通信する。そしてUWBデバイス3 1006は、単一のチャネル4を介してUWBデバイス4 1008と通信している。その他の構成も可能である。この通信デバイスは多くの様々なアプリケーションに使用され、そして例えばヘッドセット、マイク、生体測定センサ、心拍計、歩数計、心電図デバイス、腕時計、靴、リモートコントロール、スイッチ、タイヤの空気圧モニタ、またはその他の通信デバイスに実装され得る。] 図10 [0046] 図11は、本開示の別の側面に従った典型的な装置1100のブロック図を例示する。装置1100は、第1容量性素子C、第2容量性素子Cvar、第1容量性素子Cの両端に第1電圧V1を印加するモジュール1102、第1電圧V1に基づいて第2容量性素子Cvarを調整するモジュール1106、及び調整された第2容量性素子Cvarを第1容量性素子Cに結合して、第1容量性素子Cの両端に第2電圧を形成するモジュール1104を備える。] 図11 [0047] 本開示のあらゆる上記側面は、多くの様々なデバイスにおいて実装され得る。例えば、上記議論された医療用アプリケーションに加えて、本開示の側面は、保険及び健康用のアプリケーションに適用され得る。更に、本開示の側面は、種々のタイプのアプリケーションにつき複数の状況で実施され得る。本明細書で述べられたような本開示のあらゆる側面を組み込み得る、その他の多数のアプリケーションがある。] [0048] 本開示の様々な側面が、上記で述べられてきた。本明細書の教示が広く様々な形態で実施され得ること、及び本明細書で開示されたあらゆる特定の構造、機能、またはその両方が単なる典型例に過ぎないことは明白であるべきである。本明細書の教示に基づき、当業者は、本明細書に開示された側面が、あらゆるその他の側面とは無関係に実施可能であり、そしてこれらの側面の2つまたはそれ以上が種々の方法で組み合わされ得ることを理解するべきである。例えば、本明細書で説明された任意の数の側面を用いて装置は実装され、または方法は実施され得る。更に、本明細書で説明された側面の1つまたはそれ以上に加えて、またはそれ以外に、その他の構造、機能、または構造及び機能を用いて、そのような装置は実装され、またはそのような方法は実施され得る。上記概念のいくつかの例として、いくつかの側面では、並行するチャネル(concurrent channel)は、パルス繰り返し周波数に基づいて確立され得る。いくつかの側面では、並行するチャネルは、パルスの位置またはオフセットに基づいて確立され得る。いくつかの側面では、並行チャネルは、時間ホッピング・シーケンスに基づいて確立され得る。いくつかの側面では、並行するチャネルは、パルス繰り返し周波数、パルス位置またはオフセット、及び時間ホッピング・シーケンスに基づいて確立され得る。] [0049] 当業者は、情報及び信号が、あらゆる様々な異なる技術及び方法を用いて表され得ることを理解するだろう。例えば、上記説明にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁場または磁粒、光学場または光子、またはこれらのあらゆる組み合わせにより表され得る。] [0050] 当業者は更に、本明細書で開示された側面に関連して述べられた種々の例示的な論理ブロック、モジュール、プロセッサ、手段、回路、及びアルゴリズムステップが、電子的なハードウェア(例えば、デジタル実装、アナログ実装、またはこの2つの組み合わせであり、これらはソース・コーディングまたはその他のいくつかの方法を用いて設計され得る)、命令を組み込むプログラムまたはデザインコードの様々な形態(これらは本明細書において便宜上、“ソフトウェア”または“ソフトウェアモジュール”と呼ばれ得る)、または両者の組み合わせとして実装され得ることを理解するだろう。ハードウェア及びソフトウェアのこの互換性を明確に例示するために、様々な例示的な要素部品、ブロック、モジュール、回路、及びステップは、一般にそれらの機能に関して上で述べられてきた。そのような機能がハードウェアまたはソフトウェアとして実施されるか否かは、特定のアプリケーション及びシステム全体に課せられた設計制限に依存する。当業者は、記述した機能を特定の各アプリケーションのために様々な方法で実施し得るが、そのような実施の決定は本開示の範囲から逸脱するものと解釈されるべきでない。] [0051] 本明細書に開示された側面に関連して述べた様々な例示の論理ブロック、モジュール、及び回路は、集積回路(“IC”)、アクセス端末、またはアクセスポイント内で実装され、またはこれらによって実行され得る。ICは、本明細書で述べた機能を実行するように設計された汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタ論理、ディスクリートハードウェア部品、電気部品、光学部品、機械部品、またはその任意の組合せを備えて良く、そしてICは、IC内部、IC外部、またはその両方にあるコードまたは命令を実行し得る。汎用プロセッサはマイクロプロセッサであって良いが、これに代るものでは、プロセッサは任意の従来のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであり得る。プロセッサはまた、計算デバイスの組合せ、例えば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連係した1つまたはそれ以上のマイクロプロセッサ、または他の任意のそのような構成として実装され得る。] [0052] 開示されたプロセスにおけるステップの特定の順序または階層は、サンプルとなるアプローチの一例であることが理解される。設計の選択に基づき、プロセスにおけるステップの具体的な順序または階層は、本開示の範囲内にありつつ、再配置され得ることが理解されるだろう。添付の方法の請求項は、見本となる種々のステップの要素を提示し、そして提示された具体的な順序または階層に限定されることを意味しない。] [0053] 本明細書に開示された側面に関連して述べた方法またはアルゴリズムのステップは、直接、ハードウェアにおいて、プロセッサによって実行されるソフトウェアモジュールにおいて、またはその二つの組合せにおいて具体化され得る。ソフトウェアモジュール(例えば、実行可能な命令及び関連するデータを含む)及びその他のデータは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD−ROM、または当技術分野で既知である他の形のあらゆるコンピュータ読み取り可能な記録媒体に存在し得る。例となる記録媒体は、例えばコンピュータ/プロセッサ(便宜上、本明細書では“プロセッサ”と呼び得る)のような機器に結合されることが出来、そのようなプロセッサは情報(例えばコード)をこの記録媒体から読み出し、情報を記録媒体に書き込むことが出来る。例となる記録媒体は、プロセッサと統合されても良い。プロセッサと記録媒体はASIC内にあっても良い。このASICはユーザ装置内にあっても良い。あるいは、プロセッサと記録媒体は、ディスクリート部品としてユーザ装置内にあっても良い。更に、いくつかの側面では、あらゆる適切なコンピュータプログラム製品が、本開示の側面の1つまたはそれ以上に関連するコードを備えるコンピュータ読み取り可能な媒体を備え得る。いくつかの側面では、コンピュータプログラム製品は、パッケージング部材を備えていても良い。] [0054] この発明が種々の側面に関連して述べられてきたが、この発明は更に変形可能であることが理解されるだろう。この出願は、この発明のあらゆる変形、使用、または適合をカバーすることを意図され、それは概してこの発明の原理に従い、そしてこの発明が属する技術内で既知の、そして慣習的なプラクティスに入る限りは、本開示からのそのような広がりを含む。] [0055] 特許請求の範囲は以下の通りである。]
权利要求:
請求項1 第1容量性素子と、第2容量性素子と、コントローラとを備え、前記コントローラは、前記第2容量性素子を、前記第1容量性素子の両端の第1電圧に基づく容量に調整し、そして前記第1容量性素子の両端に第2電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合する、ように適合される、装置。 請求項2 前記コントローラは、前記第1電圧の第1電圧源を前記第1容量性素子に結合するように更に適合される、請求項1の装置。 請求項3 前記コントローラは、第1タイミング信号に応答して前記第1電圧源を前記第1容量性素子に結合し、その後、第2タイミング信号に応答して、前記調整された第2容量性素子を前記第1容量性素子に結合する、ように更に適合される、請求項2の装置。 請求項4 前記第1及び第2タイミング信号を生成するように適合されたタイミング生成器、を更に備える請求項3の装置。 請求項5 前記コントローラは、前記第2容量性素子の両端に第3電圧を生成するように適合される、請求項1の装置。 請求項6 前記第2電圧に応答して動作するように適合された1つまたはそれ以上の要素を含む受信機、を更に備える請求項1の装置。 請求項7 前記受信機の前記1つまたはそれ以上の要素は、低ノイズ増幅器(LNA)を含む、請求項6の装置。 請求項8 前記受信機の前記1つまたはそれ以上の要素は、前記LNAのイネーブル回路を含む、請求項7の装置。 請求項9 前記第2電圧に応答して動作するように適合された1つまたはそれ以上の要素を含む送信機、を更に備える請求項1の装置。 請求項10 装置を動作させる方法であって、第1容量性素子の両端に第1電圧を印加することと、第2容量性素子を、前記第1電圧に基づく容量に調整することと、前記第1容量性素子の両端に第2電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合することとを備える方法。 請求項11 前記第1電圧の第1電圧源を前記第1容量性素子に結合すること、を更に備える請求項10の方法。 請求項12 第1及び第2タイミング信号を生成すること、を更に備え、前記第1電圧源を前記第1容量性素子に結合することは、前記第1タイミング信号に応答し、更に、前記調整された第2容量性素子を前記第1容量性素子に結合することは、前記第2タイミング信号に応答する、請求項11の方法。 請求項13 前記第2容量性素子の両端に第3電圧を生成すること、を更に備える請求項10の方法。 請求項14 前記第2電圧に応答して動作するように適合された1つまたはそれ以上の要素を用いて入力信号を処理すること、を更に備える請求項10の方法。 請求項15 第1容量性素子の両端に第1電圧を印加する手段と、第2容量性素子を、前記第1電圧に基づく容量に調整する手段と、前記第1容量性素子の両端に第2電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合する手段とを備える装置。 請求項16 前記第1電圧の第1電圧源を前記第1容量性素子に結合する手段、を更に備える請求項15の装置。 請求項17 第1及び第2タイミング信号を生成する手段、を更に備え、前記第1電圧源を前記第1容量性素子に結合する手段は、前記第1タイミング信号に応答し、更に、前記調整された第2容量性素子を前記第1容量性素子に結合する手段は、前記第2タイミング信号に応答する、請求項16の装置。 請求項18 前記第1及び第2タイミング信号を生成する手段、を更に備える請求項17の装置。 請求項19 前記第2容量性素子の両端に第3電圧を生成する手段、を更に備える請求項15の装置。 請求項20 前記第2電圧に応答して動作するように適合された1つまたはそれ以上の要素を用いて入力信号を処理する手段、を更に備える請求項15の装置。 請求項21 前記処理する手段の前記1つまたはそれ以上の要素は、低ノイズ増幅器(LNA)を含む、請求項20の装置。 請求項22 前記処理する手段の前記1つまたはそれ以上の要素は、前記LNAのイネーブル回路を含む、請求項21の装置。 請求項23 前記第2電圧に応答して動作するように適合された1つまたはそれ以上の要素を含む送信機、を更に備える請求項15の装置。 請求項24 前記入力信号は、20%またはそれ以上のオーダーのフラクショナル・スペクトル(fractional spectrum)、500MHzまたはそれ以上のオーダーのスペクトル、または20%またはそれ以上のオーダーのフラクショナル・スペクトルと500MHzまたはそれ以上のオーダーのスペクトルを有する、請求項20の装置。 請求項25 データを生成するように適合されたトランスデューサと、前記データを処理するように適合されたデバイスと、第1容量性素子と、第2容量性素子と、コントローラとを備え、前記コントローラは、前記第2容量性素子を、前記第1容量性素子の両端の第1電圧に基づく容量に調整し、そして前記デバイスのバイアス電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合する、ヘッドセット。 請求項26 データを受信するように適合された受信機と、前記データに基づいて表示(indication)を与えるように適合されたユーザインターフェースと、第1容量性素子と、第2容量性素子と、コントローラとを備え、前記コントローラは、前記第2容量性素子を、前記第1容量性素子の両端の第1電圧に基づく容量に調整し、そして前記受信機の1つまたはそれ以上の要素のバイアス電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合する、腕時計。 請求項27 データを生成するように適合されたセンサと、前記データを送信するように適合された送信機と、第1容量性素子と、第2容量性素子と、コントローラとを備え、前記コントローラは、前記第2容量性素子を、前記第1容量性素子の両端の第1電圧に基づく容量に調整し、そして前記送信機の1つまたはそれ以上の要素のバイアス電圧を確立するために、前記調整された第2容量性素子を前記第1容量性素子に結合する、検出装置。
类似技术:
公开号 | 公开日 | 专利标题 US9071244B2|2015-06-30|Ground referenced single-ended signaling US8862060B2|2014-10-14|Methods for mitigating effects of radio-frequency interference US7679433B1|2010-03-16|Circuit and method for RF power amplifier power regulation and modulation envelope tracking Wentzloff et al.2007|A 47pJ/pulse 3.1-to-5GHz All-Digital UWB Transmitter in 90nm CMOS US9668051B2|2017-05-30|Slew rate control apparatus for digital microphones US9338036B2|2016-05-10|Data-driven charge-pump transmitter for differential signaling US9086715B2|2015-07-21|Voltage regulator, envelope tracking power supply system, transmitter module, and integrated circuit device therefor US8451971B2|2013-05-28|Communication systems, clock generation circuits thereof, and method for generating clock signal JP3838547B2|2006-10-25|高周波電力増幅回路用の電源装置 US8624576B2|2014-01-07|Charge-pump system for providing independent voltages EP2894538A2|2015-07-15|Low-power low-dropout voltage regulators with high power supply rejection and fast settling performance CN102292703B|2015-06-17|被动无线接收器 EP2797234B1|2018-12-26|Local oscillator signal generator with automatic quadrature phase imbalance compensation KR20090086643A|2009-08-13|무선 주파수 신호를 수신하는 방법 및 장치 JP5259958B2|2013-08-07|ゼロdc電力消費のrf後方散乱送信 US9991751B2|2018-06-05|Short range wireless communication JP2016533052A|2016-10-20|Rfフロントエンドのためのアナログスイッチ US9172417B2|2015-10-27|Power management for a battery-powered handheld audio device WO2016007218A1|2016-01-14|Apparatuses and methods for reducing switching jitter Chandrakasan et al.2009|Low-power impulse UWB architectures and circuits CN204131471U|2015-01-28|芯片 KR100665330B1|2007-01-09|수퍼리제너레이티브 수신기 US20080012652A1|2008-01-17|Variable frequency multi-phase oscillator US20120083205A1|2012-04-05|Nfc device having a differential input envelope detector US8233579B2|2012-07-31|Devices comprising delay line for applying variable delay to clock signal
同族专利:
公开号 | 公开日 JP5134096B2|2013-01-30| EP2274659A1|2011-01-19| CN101960404A|2011-01-26| US20090224860A1|2009-09-10| KR101140907B1|2012-05-03| TW200939620A|2009-09-16| CN101960404B|2014-10-22| WO2009114023A1|2009-09-17| US8275343B2|2012-09-25| KR20100122515A|2010-11-22|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2012-05-10| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120510 | 2012-05-23| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 | 2012-08-23| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120822 | 2012-08-30| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120829 | 2012-09-08| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120907 | 2012-10-01| TRDD| Decision of grant or rejection written| 2012-10-10| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121009 | 2012-10-11| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 | 2012-11-15| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121108 | 2012-11-16| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5134096 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2012-11-16| FPAY| Renewal fee payment (event date is renewal date of database)|Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 | 2015-11-04| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2016-11-08| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2017-11-07| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2018-11-06| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2019-11-16| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|